Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 108: 154509, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36288653

RESUMEN

BACKGROUD: Estrogen deficiency is the leading cause of postmenopausal osteoporosis(PMOP) and phytoestrogens soy isoflavones (SI) have been shown to improve PMOP. Equol (Eq), an in vivo metabolite of phytoestrogens soy isoflavones (SI), has a more stable structure and stronger biological activity than its parent compound and has the greatest estrogenic activity. However, there are few studies on the therapeutic effect of Eq on PMOP. PURPOSE: To explore the therapeutic effect and mechanisms of Eq on POMP. METHODS: Osteoblast-like cells ROS1728 were cultured with different doses of Eq, estradiol (E2), separately. The effect of Eq on the proliferation, apoptosis, cell cycle of osteoblasts were detected by CCK-8 and flow cytometry, and the expression of OPG/RANK/RANKL signaling pathway of osteoblasts was detected by Quantitative real-time PCR (qRT-PCR) and Western blot (WB), and RNA silencing technology were carried out to explore the receptors through which Eq plays a role. Then PMOP rat model was established and treated by Eq or E2 to further verification of the effect and mechanism of Eq on PMOP. RESULT: Eq promoted the proliferation and inhibited the apoptosis of osteoblasts and increased the proportion of osteoblasts in the S phase and G2/M phase in a dose-dependent manner. Mechanistically, Eq treatment upregulated the expression of OPG and OPG/RANKL ratio in osteoblasts and this regulatory effect was mainly mediated through the ERß receptor. Furthermore, in vivo study, Eq improved microstructure and BMD of the femur of PMOP rat model, which imitated the osteoprotective effect of E2. Moreover, the Eq or E2 treatment increased serum levels of Ca, 1,25(OH)2D3, bone Gla-protein(BGP), and Type I procollagen (PC1), and reduced serum levels of phosphorus (P), parathyroid hormone(PTH), pyridinol (PYD), tartrate-resistant acid phosphatase (TRAP) and urinary level of deoxypyridinoline (DPD) in the treatment OVX group compared with the untreated OVX group. Meanwhile, Eq or E2 markedly induced the mRNA and protein expression of OPG and OPG/RANKL ratio. CONCLUSION: Eq can combine with ERß and exert a protective effect on PMOP by upregulating OPG/RANKL pathway.


Asunto(s)
Osteoporosis Posmenopáusica , Humanos , Femenino , Ratas , Animales , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/prevención & control , Osteoprotegerina/metabolismo , Equol/farmacología , Equol/metabolismo , Receptor beta de Estrógeno/metabolismo , Fitoestrógenos/farmacología , Ligando RANK/metabolismo , Osteoblastos
2.
Front Nutr ; 9: 986192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337646

RESUMEN

Background: This study aimed to explore whether S-Equol delays diabetes-induced osteoporosis and the molecular mechanisms underlying its therapeutic effects. Materials and methods: Thirty-five male Sprague-Dawley rats were randomized into five groups. The diabetic osteoporosis (DOP) group and three S-Equol treatment groups were intraperitoneally injected with streptozotocin (STZ) to develop a DOP model. After the 12-week intervention, bone transformation indicators were detected using an enzyme-linked immunosorbent assay kit; bone mineral density (BMD) and bone microstructure were obtained using dual-energy X-ray absorptiometry and microCT; morphological changes in the bone tissue were investigated using HE staining; bone morphogenetic proteins were detected using immunohistochemical staining. ROS17/2.8 cells were cultured in vitro, and Cell Counting Kit-8 was used to test the protective effects of S-Equol in osteoblastic cells in a high-fat and high-glucose environment. Furthermore, the expression of osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), estrogen receptor ß(ERß), phosphorylated Akt (pAKT)/protein kinase B (AKT), and osteocalcin (OC) in bone tissue and ROS17/2.8 cells was assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blotting. To determine whether ERß and phosphatidylinositol 3' -kinase (PI3K)/AKT signaling pathways are involved in the process, LY294002 (PI3K signaling pathway inhibitor) and small interfering RNA targeting ERß mRNA (si-ERß) were used to verify the function of the ERß-mediated PI3K/AKT pathway in this process. Results: After the 12-week intervention, S-Equol enhanced BMD, improved bone microarchitecture in DOP rats (P < 0.05), and improved markers of bone metabolism (P < 0.05). In vitro, 10-6 mmol/L S-Equol was selected to significantly protect osteoblasts from high- and high-glucose environments (P < 0.05). Gene expression of OPG, ERß, pAKT/AKT, and OC was upregulated compared to the DOP group, and RANKL was downregulated compared to the DOP group (P < 0.05) both in bone tissue and osteoblastic cells. The promotion of OPG and pAKT/AKT is mediated by LY294002 and siERß. Conclusion: S-Equol binds to ERß to regulate OPG/RANKL via the PI3K/AKT pathway and improve DOP. Our results demonstrate the potential role of S-Equol in the treatment of DOP by targeting ERß. Thus, S-Equol may have the potential to be an adjuvant drug for treating DOP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...